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Consider a random medium consisting of N points randomly distributed so that there is no correlation among
the distances separating them. This is the random link model, which is the high dimensionality limit �mean-
field approximation� for the Euclidean random point structure. In the random link model, at discrete time steps,
a walker moves to the nearest point, which has not been visited in the last � steps �memory�, producing a
deterministic partially self-avoiding walk �the tourist walk�. We have analytically obtained the distribution of
the number n of points explored by the walker with memory �=2, as well as the transient and period joint
distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases
�=1 �memoryless walker, driven by extreme value statistics� and �=2 �walker with memory, driven by
combinatorial statistics�. In the �=1 case, the mean newly visited points in the thermodynamic limit �N�1� is
just �n�=e=2.72. . . while in the �=2 case, the mean number �n� of visited points grows proportionally to N1/2.
Also, this result allows us to establish an equivalence between the random link model with �=2 and random
map �uncorrelated back and forth distances� with �=0 and the abrupt change between the probabilities for null
transient time and subsequent ones.
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I. INTRODUCTION

Although not as thoroughly studied as random walks in
disordered media �1� and complex media �2�, deterministic
walks in regular �3,4� and disordered media �5–7� present
very interesting results, having for instance an application to
foraging �8–10�. The memory in random walks has the effect
of changing the behavior of the Gaussian asymptotic dis-
placement distribution �11�. Here, we are interested in under-
standing the effect of memory in a partially self-avoiding
deterministic walk algorithm, known as the tourist walk
�TW� �12–14�. These walks, that are described below, have
been applied to characterize thesaurus �14�, as a pattern rec-
ognition algorithm �15� and image analysis �16,17�.

Consider N points �sites, cities� randomly distributed in-
side a d-dimensional hypercube with unitary edges. The dis-
tance Di,j between any pair of points si and sj is calculated
via Euclidean metrics. A walker leaves a given point and
moves, at each discrete time step, obeying the deterministic
rule of going to the nearest point �shortest Euclidean dis-
tance�, which has not been visited in the � preceding steps.
This rule produces trajectories with an initial transient part of
t steps and a cycle of p steps as a final periodic part. Once
trapped in a cycle, the walker does not visit new points any
longer. Short transient times and short period cycles limit
exploration of the medium by the walker. The analytical re-
sults �18� have been obtained for �i� memoryless walkers in
the deterministic �19� and stochastic �20,21� versions of the
TW and for �ii� deterministic walk with arbitrary memory in
one-dimensional systems �22�. Here we consider the memory

effect in deterministic walks in a mean-field approximation.
The deterministic TW, with memory �=0, is trivial since

the walker does not move at each time step, so that the
transient-time and period joint distribution is simply
S0,d

�N��t , p�=�t,0�p,1, where �i,j is the Kronecker delta. With
memory �=1, the walker must leave the current site at each
time step. The joint distribution S1,d

�N��t , p� is obtained consid-
ering the trajectories of a tourist leaving from all sites of a
given map and statistics is performed for different realiza-
tions �maps�. For N�1, the transient-time and period joint
distribution is obtained analytically for arbitrary dimension-
ality �19�: S1,d

����t , p�= ��t+ Id
−1���1+ Id

−1� /��t+ p+ Id
−1���p,2,

where ��z� is the gamma function and Id= I1/4�1 /2, �d
+1� /2� is the normalized incomplete beta function. This case
does not lead to exploration of the random medium since
after a very short transient time, the tourist gets trapped in
pairs of cities that are mutually nearest neighbors.

Interesting phenomena occur when the memory values are
greater or equal to two ���2�. In this case, the cycle distri-
bution is no longer concentrated at pmin=�+1, but presents a
whole spectrum of cycles with period p� pmin, with possible
power-law decay �12,14�, favoring exploration of the me-
dium by the walker. The elucidation of this intriguing broad-
ening of the cycle period distribution is our main objective in
this paper.

As the medium dimensionality d increases, the correla-
tions between the distances Di,j become weaker and weaker
so that in the high dimensionality limit �d→��, the distances
can be considered as independent random variables, uni-
formly distributed in the interval �0,1� �23–28�. This is the
mean-field model named random link �RL�, where two Eu-
clidean constraints still remain: �i� the distance from a point
to itself is null, Di,i=0, and �ii� the forward and backward
distances are equal, Di,j =Dj,i. Breaking these constraints
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leads to the random map model �RM� �29�, which is a mean-
field approximation for the Kauffman’s model �30�. The
neighborhood statistics for these mean-field models have
been analytically studied in Ref. �31�.

In this paper, we obtain analytical results for the TW, with
memory �=2 in the d→� medium, i.e., the RL approxima-
tion. These results enable us to explain the main mechanism
which makes the �=1 and ��2 situations so distinct. Also,
they permit us to establish a relationship between the mean-
field RL and RM models. The walks with memory �=2 in
the symmetric independent random distance case �RL model�
is equivalent to memoryless ��=0� walks in the asymmetric
independent random distance case �RM model�, which has
been already solved in Ref. �19�. Throughout this relation-
ship between RL and RM models, we show that the decay
for the cycle period distribution in the RL model is also a
power law 	p−1. Also we are able to explain the reason for
the already observed numerically abrupt change in the tran-
sient and period joint distribution for null transient t=0.

The presentation of these results is briefly sketched in the

following. In Sec. II, we calculate the probability S̃2,rl
�N��ñ� for

the walker, with memory �=2, to visit ñ distinct sites before
the first passage to any already visited site, walking on the
RL model with N sites. We start calculating the complemen-

tary cumulative distribution F̃2,rl
�N��ñ� �upper-tail distribution�.

Next, through an analogy to the geometric distribution, we
obtain the revisitation p̃2,rl

�N��j� �first passage� and exploration
q̃2,rl

�N��j� probabilities. Using an alternative derivation, we ob-
tain simpler expressions for these probabilities, which leads

to a closed analytical expression for F̃2,rl
�N��ñ�. In Sec. III, we

show that the probability for the walker to get trapped into a
cycle when revisiting a site along the trajectory is 2 /3, which
is counterintuitive. This result �combined with previous
ones� allows us to obtain the complementary cumulative dis-
tribution F2,rl

�N��n� for the total number n of visited sites �until
the walker enters an attractor� and explain the equivalent
between RL and RM models. In Sec. IV, we obtain the joint
distribution S2,rl

�N��t , p� of transient time t and cycle period p
and show the drastic difference between the t=0 and t�0
cases. Universal probability distributions are obtained rescal-
ing variables. A final discussion is presented in Sec. V and
future studies are proposed.

II. DISTRIBUTION FOR THE NUMBER OF EXPLORED
SITES BEFORE THE FIRST PASSAGE

Consider that the walker mentioned in the Introduction of
this paper, who performs a walk with memory �=2 in the
RL model with N points, has visited ñ�3=�+1= ñmin dis-
tinct sites and then revisits one of these sites. Aiming to

obtain the distribution S̃2,rl
�N��ñ� of the number ñ of sites visited

before the first passage, we start calculating the complemen-
tary cumulative �upper-tail� distribution

F̃2,rl
�N��ñ� = �

k=ñ

N

S̃2,rl
�N��k� ,

i.e., the probability for the tourist to explore at least ñ distinct
sites, before the first revisitation.

In the schema of Fig. 1, the tourist leaves from a given
site s1 �first step, j=1� and follows the trajectory
s1 ,s2 , . . . ,sñ, exploring ñ=9 distinct sites, with no revisita-
tion. For 1
 i
 ñ−1, let us denote

�1� xi the distance between the consecutive sites si and si+1
in the trajectory �thick continuous lines of Fig. 1�.

�2� yi,k the distances between the site si in the trajectory
and other sites outside the trajectory �thin continuous lines
partially depicted in Fig. 1�.

�3� zi,k the distance between the nonconsecutive sites si
and sk in the trajectory �dashed lines of Fig. 1�.

Using the definition of the RL model, all these distances
xi, yi,k, and zi,k have a uniform deviate in the interval �0, 1�.

The conditions for the tourist to follow the trajectory
s1 ,s2 , . . . ,sñ in the first ñ steps are as follows:

�1� In the case �=1 �already solved in Ref. �19��, the
distances xi must obey the relation xñ−1�xñ−2� ¯ �x1,
once the tourist stops exploring new sites when xi+1�xi, giv-
ing rise to a cycle of period p=2. But for the case �=2
addressed here, each distance xi may vary unrestrictedly in
the interval �0, 1�, because the memory �=2 forbids the
tourist to move backward from si+1 to si �even if xi+1�xi�.

�2� When the tourist is about to walk the distance xi �and
move from si to si+1� there are N− i nonexplored sites at his
or her disposal.

�3� For each site si, all N− �ñ−1� distances yi,k must be
greater than xi. The probability for this to occur is
��xi

1 dyi,k�N−ñ+1= �1−xi�N−ñ+1. The only exception is the site
sñ−1, which has N− ñ distances yñ−1,k connected to it �see Fig.
1, where sñ−1 corresponds to s8�.

�4� To avoid shortcuts and revisits, each distance zi,k must
be greater than both xi and xk.

These conditions lead to

F̃2,rl
�N��ñ� = 	

i=1

ñ−2 

0

1

dxi�N − i��1 − xi�N−ñ+1

 

0

1

dxñ−1�N − ñ + 1��1 − xñ−1�N−ñ

 	
i=1

ñ−3

	
k=i+2

ñ−1 

max�xi,xk�

1

dzi,k. �1�

It is worthwhile to mention that we have made no approxi-

FIG. 1. Schematic representation of a walk with at least ñ=9
sites visited before the first passage. The walker leaves from the site
s1 and follows the trajectory s1 ,s2 ,s3 , . . . ,s9.
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mation yet, hence Eq. �1� yields exact results even for small
values of N, as Table I shows.

Although Eq. �1� is exact, the function max�xi ,xk� in the
lower limits of the integrals in zi,k makes it difficult to solve,
once one has to consider all possible �ñ−1�! orderings of
distances xi. In the following, we will consider the thermo-
dynamic limit �N�1� and make some considerations to
solve Eq. �1�.

For a better visualization, notice that the integrals in zi,k
refer to the dashed lines in Fig. 1. Observe that from each
site exactly ñ−4 dashed lines leave, except for the sites s1
and sñ−1, where ñ−3 dashed lines leave, due to the additional
distance z1,ñ−1 �thick dashed line in Fig. 1�. To obtain a more
regular expression, we can eliminate the integral in z1,ñ−1 in
Eq. �1� �without any harm� and then each variable xi appears
exactly ñ−4 times as argument of function max � �. To justify
this elimination, notice that, due to the deterministic rule of
TW, each distance xi is the minimum of N−2 random vari-
ables uniformly distributed in the interval �0,1�. Therefore,
its probability density function �PDF� is given by �19�:
g�xi�= �N−2��1−xi�N−3 and its mean and standard deviation
are �xi�=1 / �N−1��1 /N and �xi

=��N−2� / �N�N−1�2�
�1 /N so that in the limit N�1, xi assumes values close to 0
and the value of the integral �max�x1,xñ−1�

1 dz1,ñ−1 is close to 1.

Changing the exponent of xñ−1 from N− ñ to N− ñ+1, all
the variables xi are raised to the same power. The resulting
expression is algebraically symmetric with respect to the
variables x1 ,x2 , . . . ,xñ−1, which means that all possible �ñ
−1�! orderings occur with the same probability. Thus, one
can consider the specific ordering x1�x2� ¯ �xñ−1 and re-
write Eq. �1� without using the inconvenient function max� �
as follows:

F̃2,rl
�N��ñ�

�ñ − 1�!
= 	

i=1

ñ−1

�N − i�

0

1

dx1�1 − x1�N−ñ+1

 	
i=2

ñ−2 

xi−1

1

dxi�1 − xi�N−ñ+i−1

 

xñ−2

1

dxñ−1�1 − xñ−1�N−3, �2�

where we emphasize that the extra factor �ñ−1�! takes into
account all possible orderings of the variables xi. The expo-
nent of x1 may be changed from N− ñ+1 to N− ñ aiming the
exponents of x1 ,x2 , . . . ,xñ−2 to be in an arithmetic series. One
then calculates the integrals of Eq. �2� to have

F̃2,rl
�N��ñ� =

�ñ − 1�!�N − 1��N − 2��N − 3�¯
�N − 2��2N − 4��3N − 7��4N − 11�¯


¯�N − ñ + 1�

¯�ñ − 1�N − ��ñ − 1�ñ/2 + 1��

= 	
k=1

ñ−1
k�N − k�

kN − k�k + 1�/2 − 1

= 	
j=4

ñ
N − j + 1

N − j/2 − 1/�j − 1�
, �3�

where we have called j=k+1 and the lower limit of the
product has been changed from j=2 to j=4 because the fac-
tors for j=2 and j=3 are physically meaningless, as we shall
argue in Sec. II A. The distribution of ñ is calculated from
the one step difference of the upper-tail distribution as fol-
lows:

S̃2,rl
�N��ñ� = F̃2,rl

�N��ñ� − F̃2,rl
�N��ñ + 1�

= �1 −
N − ñ

N − �ñ + 1�/2 − 1/ñ�	j=4

ñ
N − j + 1

N − j/2 − 1/�j − 1�
.

�4�

The expression of Eq. �3� is similar to the one obtained for
�=1 �using Eqs. �9� and �10� of Ref. �19� and calling ñ= t

+2�: F̃1,rl
�N��ñ�= �	 j=3

ñ N−j+1
N−j/2 � / �ñ−1�!. The main difference is the

presence of the factor 1 / �ñ−1�!, because, for �=1, one must
consider only the specific ordering xñ−1�xñ−2� ¯ �x1.

At this point we are able to understand the major role
played by the memory in this partially self-avoiding walk.
For �=1, the walker must go to the nearest neighbor. The
extreme value statistics is behind this dynamics. But, for
instance, forbidding the walker to return to the last visited
site opens up the possibility to go to the first or second near-

TABLE I. Numerical validation of Eq. �1�. The columns F̃2,rl
�6� �ñ� and S̃2,rl

�6� �ñ� refer to analytical values and
the columns mean and standard error come from numeric simulation. Walks were performed on 300 000 000
maps with N=6 points each.

ñ F̃2,rl
�6� �ñ� S̃2,rl

�6� �ñ� Mean
Standard

error Difference
Difference �in
standard error�

3 1 0.15625 0.15624 110−5 710−6 0.62

4 27

32
0.29534 0.29535 110−5 210−5 1.13

5 9 459

17 248
0.33785 0.33784 110−5 110−5 0.82

6 107 301

509 600
0.21056 0.21056 110−5 310−6 0.22
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est neighbor, which transforms the extreme value statistics to
the combinatorial statistics. Mathematically, this is expressed
by the absence of �ñ−1�! in Eq. �3�.

A. Analogy to the geometric distribution

Making an analogy to the geometric distribution, we can

write Eq. �4� as S̃2,rl
�N��ñ�= p̃2,rl

�N��ñ+1�	 j=4
ñ q̃2,rl

�N��j�, where

q̃2,rl
�N��j� =

N − j + 1

N − j/2 − 1/�j − 1�
�5�

is the exploration probability in the jth step and p̃2,rl
�N��j�=1

− q̃2,rl
�N��j� is the revisitation probability in the jth step. We

remark that the expression of Eq. �5� is similar to the one
obtained for �=1 �adapting Eqs. �9� and �10� of Ref. �19�
from their original concept of subsistence probability to the
concept of exploration probability handled here�: �j
−1�q̃1,rl

�N��j�= �N− j+1� / �N− j /2�. The main difference is the
extra factor j−1, which is a consequence of the restriction
xñ−1�xñ−2� ¯ �x1. This extra factor explains the abrupt
change in the exploratory behavior between �=1 and �=2
cases: on one hand, for �=1 the exploration probability �in
the thermodynamic limit� decreases as 1 / �j−1� along the
trajectory; on the other hand, for �=2 this probability tends
to 1, when N→�.

Once the memory �=2 assures the tourist to explore at
least ñmin=�+1=3 sites, it only makes sense to define ex-
ploration probability from the fourth step. In fact, for the first
step �j=1� Eq. �5� does not have a defined value, for the
second step it yields q̃2,rl

�N��2�= �N−1� / �N−2��1, which is
absurd, and for the third step q̃2,rl

�N��3�=1. To take into account
the proper physical content, we previously changed the lower
limit of the products of Eq. �3� from j=2 to j=4. It is inter-
esting to mention that for the step j=N+1 �after the tourist
explores all the N sites�, Eq. �5� correctly yields q̃2,rl

�N��N+1�
=0.

Since in the jth step there are j−3 sites equally probable
to be revisited and p̃2,rl

�N��j� is the probability for the tourist to
revisit any one of these sites, in the limit N� j�1 the prob-
ability p̃rl for the tourist to revisit a specific site sk is

p̃rl =
1

j − 3
p̃2,rl

�N��j� =
1

j − 3

j/2 − 1 − 1/�j − 1�
N − j/2 − 1/�j − 1�

�
1

2N
, �6�

which is half the probability for him or her to explore a
specific new site �namely, q̃rl=1 / �N− j��1 /N�.

B. Alternative derivation

In what follows, we obtain simpler expressions for the
first passage and exploration probabilities for N�1, via an
alternative reasoning. From these probabilities, we obtain

closed analytical expressions for F̃2,rl
�N��ñ�.

1. First passage and exploration probabilities

Suppose that the tourist has traveled along the trajectory
sites s1 ,s2 , . . . ,sñ �ñ�3� without any site revisitation. Let us
first retrieve the probability p̃rl for the tourist to revisit a
specific site sk �outside the exclusion window, i.e., k
 ñ−2�

in the following step. To do this, consider the following con-
straints �see Fig. 1�:

�1� The distance zñ,k must be smaller than xñ.
�2� Once in the �k+1�th step, the tourist came from site sk

to sk+1; the distance zñ,k is greater than the distance xk.
In brief, zñ,k must vary between xk and xñ, so that, 0�xk

�zñ,k�xñ�1.
Once the PDF of each distance xi is g�xi�= �N−2��1

−xi�N−3 and zñ,k has uniform deviate �by definition of the
RL model�, for N�1, the probability p̃rl is given by
p̃rl= P�xk�zñ,k�xñ�=�0

1dxk�N−2��1−xk�N−3�xk

1 dxñ �N−2� �1
−xñ�N−3�xk

xñdzñ,k= �N−2� / ��N−1��2N−3���1 / �2N�, which
agrees with Eq. �6�.

For a generic step j there are j−3 sites susceptible to be
revisited so that the first passage and exploration probabili-
ties for this step are p̃2,rl

�N��j�= �j−3� / �2N�=1− q̃2,rl
�N��j�, which

is an approximation for Eq. �5�, leading to

F̃2,rl
�N��ñ� = 	

j=4

ñ

q̃2,rl
�N��j� = 	

j=4

ñ �1 −
j − 3

2N
�

=
��2N�

��2N − ñ + 3��2N�ñ−3 , �7�

which is a closed analytical form for Eq. �3�.

2. Exponential form (cumulative half Gaussian)

In the limit N�1, the exploration probability may be
written as q̃2,rl

�N��j�= �1−1 / �2N�� j−3, so that Eq. �7� assumes its
exponential form

F̃2,rl
�N��ñ� = 	

j=4

ñ

q̃2,rl
�N��j�

= �1 −
1

2N
��̃

� e−�̃/�2N�

= e−��ñ − 3�2/�4N���1+1/�ñ−3��, �8�

where

�̃ = �
j=4

ñ

�j − 3� =
�ñ − 2��ñ − 3�

2
�9�

has a simple physical interpretation: it is just the number of
distances zi,k between nonconsecutive sites of trajectory. No-
tice that the trajectory depicted in Fig. 1 is topologically
equivalent to a �ñ−1�-sided polygon, which has �ñ−1��ñ
−4� /2 diagonals. All these diagonals plus the side s1sñ−1 to-
talize �̃= �ñ−2��ñ−3� /2 paths �dashed lines in Fig. 1�,
which allow revisitation.

For ñ−3�1, one can disregard 1 / �ñ−3� in Eq. �8�, lead-

ing to a half Gaussian: y= F̃2,rl
�N��ñ�=e−��ñ − 3� / �2N�2/2, indicating

that the scaled variable is x= �ñ− ñmin� /�2N with ñmin=�

+1=3, leading to the universal curve y=e−x2/2, with x�0.
We only have kept ñmin to compare to a possible generaliza-
tion of these calculations for the case of short memory �
�N.
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III. DISTRIBUTION OF THE TOTAL NUMBER
OF EXPLORED SITES

Up to this point we have been focused on the number ñ of
sites explored before the first revisitation to a site. In the TW
with �=1, the revisitation to a site implies the tourist has
entered an attractor of period p=2 �19�, but with �=2, this
revisitation does not imply capture. In what follows, we cal-
culate the probability pt for the tourist to get trapped during
a revisitation to a site and then obtain the capture p2,rl

�N��j� and
subsistence q2,rl

�N��j� probabilities and also the upper-tail distri-
bution F2,rl

�N��n� for the number n of sites visited in the whole
trajectory.

A. Trapping probability

Consider Fig. 1 and that the tourist has traveled along the
trajectory s1 ,s2 , . . . ,sñ without any site revisitation. Assume
that in the following step he or she revisits site sk �outside the
memory window, k
 ñ−2�. Due to the deterministic rule,
two situations may occur: �i� if xk�xk−1, the tourist moves
forward to site sk+1 and gets trapped by an attractor of period
p= ñ−k+1; �ii� if xk−1�xk, the tourist moves backward to
site sk−1 and escapes from the attractor. Therefore, the walker
trapping or escaping depends on which distance xk−1 or xk is
shorter. The only exception is a revisitation to s1, when the
tourist is unconditionally trapped, leading to a trajectory with
a null transient time �t=0� and a cycle of period p= ñ.

Taking into consideration that all �ñ−1�! possible order-
ings of the distances x1 ,x2 , . . . ,xñ−1 are equally probable, one
could naively conclude that the trapping probability would
be pt= P�xk�xk−1�=1 /2. Nonetheless, numerical simulations
of this system have refuted this expectation, pointing out that
this probability is in fact pt=2 /3.

To understand this result, we first show that the probabil-
ity Pv�r� for the tourist to revisit a specific site sk is propor-
tional to the rank r occupied by the associated distance xk
�between sites sk and sk+1� when one reorders the distances
x1 ,x2 , . . . ,xñ−2 decreasingly �so that xk is the rth greatest
one�. Secondly, we show that the probability Pt�r� for the
tourist to get trapped when revisiting the site sk is propor-
tional to r−1. Finally, from Pv�r� and Pt�r� we prove that
pt=2 /3.

1. Order statistics

Let us recall some tools from the order statistics field.
Given a sample of M random variables X1 ,X2 , . . . ,XM, reor-
der them so that X�1��X�2�� ¯ �X�M�, where the index r
between parentheses is the rank of X�r�. If X has PDF g�x�
and cumulative distribution G�x�=�−�

x dx�g�x��, then the PDF
hr�x� of X�r� is hr�x�=M!�G�x��M−r�1−G�x��r−1g�x� / ��r
−1�!�M −r�!�, for r=1,2 , . . . ,M.

Resuming the TW with �=2 on the RL model, each dis-
tance xi has PDF given by g�x�= �N−2��1−x�N−3, then its
cumulative distribution is G�x�=�0

xdx�g�x��=1− �1−x�N−2

and the PDF of x�r� is hr�x�= ñ!�1− �1−x�N−2�ñ−r��1
−x�N−2�r−1�N−2��1−x�N−3 / ��r−1�!�ñ−r�!�.

2. Rank-revisitation and rank-trapping probabilities

Again, consider that the tourist has traveled along the tra-
jectory sites s1 ,s2 , . . . ,sñ �without any site revisitation�. Let

us calculate the probability Pv�r� for him or her to revisit the
site s�r�=sk �with associated distance x�r�=xk� in the next step.
Once s�r� is the nearest site, the distance zñ,�r� has PDF given
by g�x�= �N−2��1−x�N−3 and once the tourist came from site
s�r�=sk to sk+1 in the �k+1�th step, the distance zñ,�r�
is certainly greater than x�r�. Thus, Pv�r�	 P�zñ,�r��x�r��
= ñ! / ��r−1�!�ñ−r�!� �0

1 dx�1− �1−x�N−2�ñ−r ��1−x�N−2�r−1 �N
−2��1−x�N−3�x

1dz�N−2��1−z�N−3. Evaluating the integral in
z and calling y= �1−x�N−2 the above equation is rewritten
as Pv�r�	 ñ! / ��r−1�!�ñ−r�!�B�ñ−r+1,r+1�= ñ! / ��r−1�!�ñ
−r�!��ñ−r�!r! / �ñ+1�!=r / �ñ+1�. This expression is not the
probability Pv itself. Instead, it only gives the dependence of
Pv on r.

Normalizing Pv over 1
r
 ñ−2, one has

Pv�r� =
r

�
k=1

ñ−2

k

=
2r

�ñ − 1��ñ − 2�
, �10�

where ñ−2 is the number of sites available to revisitation
�the sites sñ and sñ−1 are forbidden by memory�.

The result of Eq. �10� does not contradict Eq. �6�, since
Eq. �6� gives an approximated probability for the tourist to
revisit a specific site sk, regardless of its associated distance
xk=x�r�, while Eq. �10� gives the conditional probability for
the tourist to “choose” the r-ranked site s�r� during a revisi-
tation after exploring ñ distinct sites.

Once the tourist had revisited site sk �or equivalently s�r��,
the probability Pt�r� for him or her to get trapped also de-
pends on the rank r. The trapping condition is that xk−1 must
be greater than xk. Since xk=x�r� is the rth greater distance,
there are only r−1 remaining distances �among ñ−3 ones�
greater than xk. Thus,

Pt�r� =
r − 1

ñ − 3
. �11�

Combining Eqs. �10� and �11�, the probability for the
tourist to get trapped when revisiting a specific site s�r� is
Pv�r�Pt�r�=2r�r−1� / ��ñ−1��ñ−2��ñ−3��. Thus, the prob-
ability for the tourist to get trapped when revisiting any site
is pt=�r=1

ñ−2Pv�r�Pt�r�. Calling m= ñ−2 and evaluating
�r=1

m r�r−1�=m�m2−1� /3 one finds the trapping probability

pt = 2/3. �12�

We remark that this result has been obtained without any
approximation, and numerical simulations agree to it even
for small values of N.

B. Capture and subsistence probabilities

Combining the probability p̃rl for the tourist to revisit a
specific site sk �Eq. �6�� and the trapping probability pt �Eq.
�12��, one obtains the probability prl for the tourist to revisit
sk and get trapped as follows:

prl = p̃rlpt =
1

2N

2

3
=

1

3N
. �13�

Since in the jth step there are j−3 sites available to revisita-
tion, the capture �i.e., revisiting any site and getting trapped�
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and subsistence �i.e., exploring any new site or revisiting any
site and not getting trapped� probabilities in the jth step are
p2,rl

�N��j�= �j−3� / �3N�=1−q2,rl
�N��j� and the upper-tail distribu-

tion for the number n of sites explored by the tourist in the
whole trajectory is

F2,rl
�N��n� = 	

j=4

n

q2,rl
�N��j� =

��3N�
��3N − n + 3��3N�n−3 , �14�

which is analogous to Eq. �7�.

1. Comparison to the RM model with �=0

The expression of Eq. �14� is similar to the one obtained
for the RM model with memory �=0 �19�: F0,rm

�N� �n�
=��N� / ���N−n�Nn�. This result explains the nontrivial
equivalence observed between the RL model with N points
and memory �=2 �memory effect� and the RM model with
3N points and memory �=0 �effect of distance symmetry
break�, when one compares the distributions for the total
number n of sites explored by the tourist.

Notice that, taking both models with N points each, in RL
with �=2, at each step, the probability for the tourist to
revisit a specific site and get trapped is prl�1 / �3N�, and in
RM with �=0, this probability is prm=1 /N. Therefore, tak-
ing RL with N points and RM with 3N points equals these
probabilities and justifies the equivalence.

2. Exponential form

In the limit N�1, the subsistence probability is rewritten
as q2,rl

�N��j�= �1−1 / �3N�� j−3 and one obtains the exponential
form of Eq. �14�, namely, F2,rl

�N��n�=	 j=4
n q2,rl

�N��j�= �1
−1 / �3N����e−�/�3N�, with �= �n−2��n−3� /2.

Rather than differentiating F2,rl
�N��n�, the distribution S2,rl

�N��n�
for the number n of sites explored in the whole trajectory is
more precisely obtained by imposing the tourist to explore n
distinct sites and then be captured in the next step �i.e., re-
visit any site and get trapped� as follows:

S2,rl
�N��n� = F2,rl

�N��n�p2,rl
�N��n + 1� =

n − 2

3N
e−��n−2��n−3�/2/�3N��.

�15�

For n�1, calling y=�3NS2,rl
�N��n� and x= �n−nmin� /�3N

�with nmin=�+1=3� one obtains the universal plot for this
system as follows:

y = xe−x2/2, �16�

with x�0 and mth moment �xm�=2m/2��m /2+1�, where we
see that normalization is assured by �x0�=1. The mean value
is �x�=�� /2 and the variance �x2�− �x�2=2−� /2. Figure 2
exhibits a plot of Eq. �16� and experimental data. From this
figure, or calculating analytically, one obtains that the mode
is at x=1.

IV. TRANSIENT AND PERIOD JOINT DISTRIBUTION

The transient or period joint distribution S2,rl
�N��t , p� can be

obtained similarly to Eq. �15�, by imposing the tourist to

explore n distinct sites and then revisit the specific site sk
�instead of any site� and get trapped, giving rise to a trajec-
tory with transient t=k−1 and period p=n−k+1. We notice
that the relevant variable is t+ p=n. Hence, S2,rl

�N��t , p� is ob-
tained multiplying F2,rl

�N��t+ p� by prl �Eq. �13�� �or by p̃rl �Eq.
�6�� in the case t=0, since the tourist is unconditionally cap-
tured when revisiting the site s1�.

S2,rl
�N��t,p� =

1

�3 − �t,0�N
e−��t+p−2��t+p−3�/2/�3N��, �17�

where �i,j is the Kronecker delta. Figure 3 exhibits a plot of
Eq. �17� for N=1000 points.

A. Transient time marginal distribution

The transient time distribution is calculated summing Eq.
�17� over all possible periods, i.e., S2,rl

�N��t�=�p=3
N S2,rl

�N��t , p�. In
the limit N�1, this summation can be approximated by the
integral

S2,rl
�N��t� = 


5/2

�

dpS2,rl
�N��t,p� = �1 +

�t,0

2
�� �

6N
erfc� t

�6N
� ,

where the lower limit 5 /2 is due to a Yates continuity cor-
rection �which other than improve the integral approxima-
tion, make the analytical form quite simpler� and the upper
limit has been extended to infinity to make calculation easier

FIG. 2. Finite size effect for the distributions and convergence
to the universal curve: y=xe−x2/2.

FIG. 3. Transient and period joint distribution for a map with
N=1000 points in the RL model with �=2.
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�with no harm, because p�N in Eq. �17� yields values close
to 0� and erfc�x�= �2 /����z

�dxe−x2
is the complementary er-

ror function.

B. Cycle period marginal distribution

Similarly, the period distribution is

S2,rl
�N��p� = �

t=0

N−3

S2,rl
�N��t,p�

= 

−1

�

dt
1

3N
e−��t+p−2��t+p−3�/2/�3N���

=� �

6N
erfc� p − 7/2

�6N
� �

e−p2/�6N�

p
,

where the lower limit −1 is due to both Yates continuity
correction and a compensation for the half extra degree in t
=0. The mean period value is �p�=�3�N /8 and standard
deviation is �p=��2−3� /8�N. For p��6N, the decay fol-
lows a power law S2,rl

�N��p�	 p−1.

V. CONCLUSION

In this paper, we have analytically obtained the statistical
distributions for the deterministic tourist walk with memory
�=2 on the random link model. The distribution for the
number of sites explored before the first passage has been
compared to the one previously obtained for the case �=1,
elucidating the mechanism that strongly increases the tour-
ist’s exploratory behavior. This mechanism is explained as
follows. On one hand, for �=1 the distances traveled at each
step must obey the ordering x1�x2�¯, leading to a local-
ized exploration. In the thermodynamic limit, the mean num-
ber of explored sites is �n�=e=2.718 28. . . and the explora-
tion probability in the jth step �j�4� is 1 / �j−1�. This
dynamics is due to the underlying extreme value statistics.
On the other hand, for �=2 the distances x1 ,x2 , . . . are un-
constrained, leading to an extended exploration: �n� is pro-
portional to N1/2 and the exploration probability in the jth
step �with j�N� tends to 1, as N→�. This dynamics is due
to the underlying combinatorial statistics. The factor �ñ
−1�! in Eq. �2� represents the change from the extreme value

statistics to the combinatorial one, which makes the �p,2 dis-
tribution of �=1 to broaden to a wide �	1 / p� distribution
for ��2.

Through the trapping probability pt=2 /3 �which value is
counterintuitive�, we have obtained the capture and subsis-
tence probabilities and a closed form to the complementary
cumulative distribution for the number of sites explored in
the whole trajectory. This distribution is analogous to the one
obtained for the random map model with �=0. This result
explains the equivalence between these mean field models
�RL with N points and memory �=2; and RM with 3N
points and memory �=0�. For a large number of sites �N
�1� in the random medium, the distribution S2,rl

�N��n� of hav-
ing n distinct sites visited by the tourist with memory �=2 in
the random link model is universal y=xe−x2/2 with y
=�3NS2,rl

�N��n� and x= �n−3� /�3N.
The transient time t and cycle period p joint distribution

S2,rl
�N��t , p�=e��t + p − 3�2/�3N��/2 / �N�3−�t,0�� has been obtained no-

ticing that the relevant variable is approximately given by t
+ p=n. The marginal distributions are also universal. For the
transient time one has y= �1+��x� /2�erfc�x� with y
=�6N /�S2,rl

�N��t� and x= t /�6N and for the period distribution
y=erfc�x�, with y=�6N /�S2,rl

�N��p� and x= �p−7 /2� /�6N. We
have shown that the discrepancy in the null transient time
distribution �t=0�, when compared to the subsequent ones
�t�0�, is due to the higher capture probability the starting
site s1 has �namely, p̃rl=1 / �2N�� when compared to the other
ones �prl=1 / �3N��. We also have shown that the period dis-
tribution decays according to a power law S2,rl

�N��p�	 p−1. In
short, it is the effect of shorter walker memory in the first
steps along the trajectory.

Future studies concern the consideration of higher
memory values in the random link model and the under-
standing of the connection with the random map model. As
the memory increases, we expect a transition from the closed
periods to nonclosed ones �chaotic phase�. We are interested
in understanding the role of finite dimensionality of the sys-
tem.
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